Community Detection
in the Russian social media VKontakte

&
Computational Complexity Analysis

Alexey Elkin
August 2020

1 Introduction

The purpose of this project is to create a program that detects discrete groups
in large graphs and apply it to categorize users into social groups on the Russian
social media VKontakte.

The program is based on the Girvan-Newman algorithm and implemented
in Python[3]. The partitioned graphs are drawn using NetworkX [4].

Data from Zachary’s Karate Club[2] was used to test the program, and the
canonical result was produced, demonstrating that the program works correctly
when applied to small graphs.

Data harvested from VKontakte was converted into a .CSV file with the rows
representing ”friendship status” and the two columns representing the friends.
The data consisted of 407 users/nodes, and 16K connections between them.
After 710 iterations, no new groups were detected. Further iterations removed
outer nodes instead.

The output dendrogram demonstrates that the dataset can be split into 4 or
5 social groups. The results generated by my code were compared to a standard
library program based on the Louvain method[1], which produced practically
identical end results. This demonstrated the robustness of the my program and
confirmed that it works appropriately even for very large graphs

Additionally, the algorithmic complexity of each type of operation was as-
sessed. This showed that the overall time complexity is T'(n) = O(n?).

The resulting data is very versatile; it can be used by marketing companies
to target users based on their interests, group membership, and even political
opinions.

Community Detection in VKontakte Alexey Elkin

1.1 Undirected Graphs

The dataset extracted from VKontakte can be represented by an undirected
graph in which the users are represented by nodes and the connections between
users - ”friendship status” - is represented by an edge connecting two nodes
together. Partitioning the graph with the Girvan-Newman algorithm reveals
the underlying structure and allows discrete social groups to be identified. An
undirected graph, G, is a pair (V, E) where V is a non-empty set of nodes, and
a set of undirected edges can be represented by

E C {{a,b}|a,be V} (1)

Let G = (V,E) be a graph. Two nodes, u,v € V are adjacent or neighbors if
{u,v} € V. If the nodes of the graph G are vy, vs, ..., v,, the adjacency matrix
of the graph, Ag, is an n *n -1, 0 matrix such that

a={ot e £ @

1.2 Graph Implementation in Python

df = pd.read_csv('vk_links.csv')

users = set(df['out_f']) .union(set(df['in_£']))

users = list(users) #converting the users set to a list
index = np.array(range(len(users)))

graph = -np.ones((491,491))

for idx, row in df.iterrows():

users.index(row['out_£f'])
index2 = users.index(row['in_f'])

index1

]
o

graph[index1] [index2]
graph [index2] [index1]

I
(@]

2 The Girvan-Newman algorithm

The Girvan-Newman algorithm is a hierarchical method used to detect commu-
nities in complex systems. The method is as follows:

1. The betweenness of all existing edges in the network is calculated first.
2. The edge(s) with the highest betweenness are removed

3. The betweenness of all edges affected by the removal is recalculated.

4. Steps 2 and 3 are repeated until no edges remain.

This algorithm serves as the basis for graph categorization in my investiga-
tion.

Community Detection in VKontakte Alexey Elkin

5 .-"'J H-«_"-\. I

O (O,

Q""\.x IE] __.-'-'l'-:_:;aJ ':5' E:I E
QP T e ©ee 0o e

o " @ @

Figure 1: The Girvan-Newman algorithm applied to a graph[2]

3 Flow and Betweenness

Betweenness is a measure of centrality in a graph based on the number of
shortest paths between nodes. The betweenness of an edge is defined as the
total amount of flow it carries, taking into account the flow between all pairs
of nodes using this edge.

The betweenness centrality of a node is give by the expression:

o) = 3 2l 3)

g
s#VFEL St

where og; is the total number of shortest paths from node s to node ¢ and
ost(v) is the number of those paths that pass through v

The concept of flow is defined as follows: For any pair of nodes A and B in the
graph that have a connection between them, one unit of ”"fluid” flows along the
edge between A and B. If there are no edges connecting A and B, zero units of
"fluid” flow between them. The flow between A and B divides itself evenly
along all possible shortest paths from A to B, so if there are k shortest paths
between A and B, 1/k unit of flow passes along each path.

3.1 Computing Betweenness values

The method for computing betweenness values for each node in a network is as
follows:

1. Perform a breadth-first search of the graph, starting at A
2. Determine the number of shortest paths from A to each other node

3. Based on these numbers, determine the amount of flow from A to all
other nodes that use each edge

Community Detection in VKontakte Alexey Elkin

3.2 Modified Breadth-First Search

The breadth-first search algorithm is as follows: Start from a pre-specific source
node, visit the node and its neighbors’ then, for each neighbor, visit its neigh-
bors’ and so on until no more nodes can be explored. However, this modified
version of the breadth-first search works slightly differently. The step at which
a node is accessed is saved for each node, and the a new graph without any
connections from the 1st step is created.

def breadth_first(graph, root):
n = graph.shape[0]
new_graph = -np.ones((n, n))
level = -np.ones(n,int)
nodes = np.array(range(n))
current_level = 0
level[root] = current_level
while current_level in level:
for node in nodes[level == current_level]:
index = nodes[(graph[node]l>=0) & (level == -1)]
new_graph[node,index] = 0
new_graph[index,node] = 0
level[index] = current_level + 1
current_level += 1
return new_graph, level

3.3 Computing Shortest Paths in Python

This function calculates the values of the shortest paths to each node (shortest
path = the sum of incoming paths). The input to this function consists of a
graph which includes the root node. Every node has its own designated "level”,
which is its distance from the root node.

def pointer(new_graph, level, root):

n = new_graph.shape[0]
output = np.zeros(n)
output [root] = 1

nodes = np.array(range(n))

for x in range(int(level.max()+1)):
for y in nodes[level == x]:
index = nodes[(new_graphly] >= 0) & (level == x+1)]
output [index] += output[y]
return output

3.4 Computing Flow in Python

The flow values from a starting node A to all other nodes in the network are
determined by working up from the lowest layers of the breadth-first search and
dividing up the flow above a node in proportion to the number of shortest paths
coming into it on each edge.

Community Detection in VKontakte Alexey Elkin

def flow(new_graph, level, root, output):

n = new_graph.shape[0]
nodes = np.array(range(n))
flows = np.ones(n)

for x in np.array(range(np.max(level)+1)[::-1]):
for y in nodes[level == x]:
for i in nodes[(new_graphly] >= 0) & (level == x-1)]:
new_graph[i] [y] = flows[y] * output[i] / output[y]
new_graph[y] [i] = flows[y] * output[i] / output [y]
flows[i] += flows[y] * output[i] / output[y]

return new_graph

3.5 Removing edges with the highest betweenness values

The edge(s) with the highest betweenness values are removed using the following
function:

def removeEdge(graph):
max_edge = graph.max()
graph[graph == max_edge] = -1
return graph

4 Algorithmic Complexity Analysis

The arguments of the program consist of the graph n and the number of it-
erations K. The graph is stored as a matrix of size n?. Since the number of
operations performed is dependent on the structure of the graph, the worst-case

time is considered.
1. def breadth_first(graph, root):

2n? + n comparison operators
n? + 2n assignments

2. def pointer(new_graph, level, root):

2n? comparison operators

n? assignments

3. def flow(new_graph, level, root, output):

3n? comparison operators
3n? multiplication / division
n? addition

4. def summary(graph, iterations):

9n? + n? comparison operators
3n3 + 2n? addition

Community Detection in VKontakte Alexey Elkin

Overall, the algorithmic complexity across all categories is O(n) = n3. There-
fore, the number of operations for each iteration is comparable to the number of
nodes in the graph cubed. The reason why the complexity of different operators
was considered individually for each function is because of the varying speeds at
which they are performed. For example, multiplication and addition operators
are faster than comparison operators.

5 Karate Club Test Graph Visualisation

”Zachary’s Karate Club” is a popular placeholder dataset used to test graph
partitioning algorithms. Figure 2 is a visualisation of the unpartitioned graph.
Upon inspection, it is evident that the social hierarchies in the club are split
into two distinct groups connected by a narrow ”bridge” which connects them.
The fact that my program produces the canonical partitioning of the Karate
Club graph demonstrates that it works correctly.

Figure 2: The unpartitioned Graph

Community Detection in VKontakte Alexey Elkin

[]
e ¢ %o
o
. Se d
L J
o e
o & .;'.
® e o
o ® ®
N °
(]
® o e
o o
[]

Figure 3: The partitioned Graph

6 VKontakte Graph Visualisations

The program was fed the data extracted from VKontakte (407 users/nodes,
16K connections). The program was run up to the 710th iteration, at which
no more unique groups appeared and further iterations simply removed outer
nodes. The images were generated using the networkz library [4].

Figure 4: A visualisation of the original graph

Community Detection in VKontakte Alexey Elkin

Figure 6: The graph partitioned into 5 sections (Girvan-Newman Algorithm)

Community Detection in VKontakte Alexey Elkin

Figure 7: The graph partitioned into 5 sections (Louvain Method)

Community Detection in VKontakte Alexey Elkin

7 Conclusion

Description The images generated by the graph categorization program demon-
strate that the social network used in the investigation can be separated into
four or five discrete social groups, which are represented by different colors.
Large discrete groups can be seen on both sides of the network, with a smaller
central group that can be divided into two sub-groups. Overall, the examples
demonstrate that my implementation of the Girvan-Newman algorithm works
as intended on classical test graphs, and is able to categorize even very large
graphs with thousands of nodes

Comparison to Louvain method The result produced by the Louvain
method is almost identical to the graph produced by my program, with the
exception of the fact that the largest group was halved by the Louvain method
algorithm. The fact that my program functions very similarly suggests that it
is also suitable to be used with large graphs.

Usefulness People categorized into the same groups often have something
in common. For example, occupation, interests, or location. This makes cat-
egorized user data is very valuable, because it can be used for targeted ad-
vertisements, social media friend recommendations, or suggestions during user
searches. Finally, categorized data can also be used to highlight statistical rela-
tionships between factors that people have in common. This gives insight into
cause-and-effect relationships, which can be used to solve real-world problems.

Optimization The code has been optimized to minimize the number of op-
erations performed and memory consumed.The program took approximately
1:49h to run on a 6-Core Intel i7-9750H processor with 32Gb RAM.The total
number of iterations was 350K. The graph was stored as a 357kB .CSV file.

References

[1] Vincent Blondel. The Louvain method for community detection in large
networks. URL: https : // perso . uclouvain . be / vincent . blondel /
research/louvain.html. (accessed: 18.09.2020).

[2] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reason-
ing about a Highly Connected World. Cambridge University Press, 2010.

[3] Alexey Elkin. Hierarchical clustering by deleting edges of high between-
ness and dendrogram with Python. URL: https://github.com/elkinal/
Social_media_analysis. (accessed: 17.09.2020).

[4] Aric Hagberg; Pieter Swart; Dan Schult. NetworkX. URL: https://networkx.
github.io/documentation/stable/index.html. (accessed: 01.08.2020).

